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Optimal nodal spline interpolants Wf of order m which have local support can
be used to interpolate a continuous function f at a set of mesh points. These splines
belong to a spline space with simple knots at the mesh points as well as at m&2
arbitrary points between any two mesh points and they reproduce polynomials of
order m. It has been shown that, for a sequence of locally uniform meshes, these
splines converge uniformly for any f # C as the mesh norm tends to zero. In this
paper, we derive a set of sufficient conditions on the sequence of meshes for the
uniform convergence of D jWf to D jf for f # Cs and j=1, ..., s<m. In addition we
give a bound for DrWf with s<r<m. Finally, we use optimal nodal spline inter-
polants for the numerical evaluation of Cauchy principal value integrals. � 1997

Academic Press

1. INTRODUCTION

In the construction of spline approximation operators it is desirable to
obtain the three properties of locality, interpolation, and optimal polyno-
mial reproduction. However, it was shown in [4] that, in the case where
the knots of the spline space are chosen to coincide with the interpolation
points, the two properties of locality and interpolation are incompatible for
quadratic or higher order splines.

Employing a procedure based on the introduction of additional knots,
De Villiers and Rohwer [4, 5] constructed, for arbitrary order, an optimal
nodal spline approximation operator W which was indeed shown to pos-
sess these three desired properties. Similar approaches have been followed
for quadratic splines in [8] and for arbitrary order splines in [1].

The approximation properties of W were studied in both [3] and [6].
In the present paper we will continue the investigation of De Villiers and
Rohwer on how well the nodal spline Wf approximates a smooth function.
In Section 2 we shall introduce the nodal splines and report the convergence
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results from [3] and [6]. In Section 3 we give the conditions under which
D jWf converges uniformly to D jf, for f # Cs and j=1, ..., s<m, where m
is the order of the spline, and D j is the j th derivative operator. In addition
we give a bound for D jWf for s< j<m. In Section 4 we give an application
of our result by showing the uniform convergence for a sequence of Cauchy
principal value (CPV) integrals of optimal nodal spline interpolants. These
splines were already used in [10] for product integration of singular
integrands and in [2] for numerical evaluation of CPV integrals by sub-
tracting out the singularity.

2. OPTIMAL NODAL SPLINE APPROXIMATION

In this section we give the necessary background material on optimal
nodal spline interpolants based on the work in [6].

Let [a, b] be a given finite interval of the real line R. For a fixed integer
m�2, let n�m&1. We define the partition Xn of [a, b] by

Xn | x0 :=a<x1< } } } <x(m&1)n :=b.

Setting {i :=x(m&1) i , 0�i�n, we define 6n :=[{i ; i=0, ..., n], so that
6n/Xn . We will denote the points of 6n and Xn"6n respectively by
primary and by secondary knots corresponding to the partition Xn .

We write Pm for the set of polynomials of order m (degree�m&1 ) and
Sm, n for the set of polynomial splines of order m with simple knots at the
points xi , i=1, ..., (m&1) n&1, so that Sm, n/Cm&2[a, b].

We define

rn := max
0�i, j�(m&1) n&1; |i& j |=1

xi+1&xi

xj+1&xj
, (1)

and

Rn := max
0�i, j�n&1; |i& j |=1

{i+1&{i

{j+1&{j
. (2)

We say that the sequence of partitions [Xn ; n=m&1, m, ...] ([6n]) is
locally uniform if there exists a constant \� m�1( \̂m�1) such that
rn�\� m (Rn�\̂m) for all n. We shall say that a sequence of spline spaces
[Sm, n] is locally uniform if the sequence of underlying partitions [Xn] is
locally uniform.

We denote by Hn the norm of the primary partition 6n

Hn := max
0�i�n&1

({i+1&{i). (3)
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In [4, 5] it was proved constructively that there exists, for arbitrary order
m, a nodal spline approximation operator Wn : B[a, b] � Sm, n , where
B[a, b] denotes the set of real-valued functions on [a, b], with the
following properties:

Wn f ({i)= f ({i), i=0, 1, ..., n; (4)

Wn p= p for all p # Pm; (5)

Wn is local in the sense that, for a fixed x # [a, b], the value of Wn f at x
depends on the values of f at at most (m+1) neighbouring primary knots.

In the linear case m=2, Wn f is trivially given by the piecewise linear
interpolant of f. Assuming henceforth that m�3, the defining formula for
Wn f on [a, b] is given by

Wn f (x) := :
q+

i= p+

f ({i)wi (x), x # [{+ , {++1], +=0, 1, ..., n&1; (6)

where, following the constructive remark in [2], we define

0, +=0, ..., i1&2;

p+ :={+&i1+1, +=i1&1, ..., n&i0 ; (7)

n&(m&1), +=n&i0+1, ..., n&1;

m&1, +=0, ..., i1&2;

q+ :={++i0, +=i1&1, ..., n&i0 ; (8)

n, +=n&i0+1, ..., n&1;

with i0 and i1 defined by

i0 :=[m�2]+1, i1 :=m&[m�2]; (9)

where, for any t # R, [t] :=the maximum integer less than or equal to t.
The relevant values on [a, b] of the set [wi ; i=0, 1, ..., n] can be

evaluated from the formulas

`
m&1

k=0, k{i

x&{k

{i&{k
, x # [a, {i1&1], (i�m&1);

wi (x) :={si (x), x # [{i1&1, {n&i0+1], (n�m); (10)

`
m&1

k=0, k{n&i

x&{n&k

{i&{n&k
, x # [{n&i0+1 , b], (i�n&(m&1));
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where

si (x) := :
m&2

r=0

:
j1

j= j0

:i, r, j Bm
(m&1)(i+ j)+r (x), (11)

with

j0 :=max[&i0 , i1&2&i], j1 :=min[&i0+m&1, n&i0&i].

The coefficients :i, r, j are given in paper by De Villiers [3, Eq. (17)]. The
B-splines series in (11) is constructed from the set [Bm

i ; i=(m&1)(i1&2),
(m&1)(i1&2)+1, ..., (m&1)(n&i0+1)&1] of normalized B-splines as
defined in [12, p. 124]. We recall that

0<Bk
i (x)�1, for x # (xi , xi+k) and Bk

i (x)=0 otherwise. (12)

The following uniform bounds hold [3, Theorem 4.2]

|:i, r, j|�_ :
i0

*=1

(Rn )*&
m&1

, (13)

and [3, Theorem 5.1]

|wi (x)|�_ :
m&1

*=1

(Rn)*&
m&1

, x # [a, b], i=0, 1, ..., n. (14)

We denote by &Wn & the operator norm

&Wn& :=sup[&Wn f &� ; f # C[a, b], & f &��1];

where &g&� :=maxx # [a, b] |g(x)| is the maximum norm of a function
g # C[a, b], and by |(g; $; I ) the modulus of continuity

|(g; $; I ) := max
0<h�$

x, x+h # I
|g(x+h)& g(x)| .

The operator norm &Wn& is bounded by [6, Eq. (1.14)]

&Wn&�(m+1) _ :
m&1

*=1

(Rn)*&
m&1

, (15)

and the following error estimates hold [6, Eqs. (1.16) and (1.17)]
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Theorem 2.1.

& f &Wn f &�

�{&Wn& |( f; mHn ; [a,b]),
(1+&Wn&) cm, & H &

n&D&f &�

for f # C[a, b];
for f # C&[a, b], &=1, 2,..., m;

with the positive numbers cm, & bounded by

(?m)& (m&&)!
22&m!

, for &=1, 2, ..., m&1;

cm, &�{ mm

22m&1m!
, for &=m. K

From Theorem 2.1 and (15) the following sufficient conditions for
uniform convergence can be deduced

Corollary 2.1. Assume f # C[a, b]. Suppose that

[6n] is locally uniform, (16)

and that

Hn � 0 as n � �. (17)

Then

& f &Wn f &� � 0, as n � �. K

Moreover, the associated error sequence is O(Hn
&), &=1, ..., m, for

correspondingly smooth f. A notable feature of the above mentioned
estimates is that the bounds involved are independent of the placement of
the knots of the secondary partition Xn"6n .

3. SMOOTHNESS OF THE INTERPOLATION OPERATOR Wn

In order to continue the study on how well the nodal spline Wn f
approximates a smooth function, we introduce the following quantities
[7, Eq. (4.1)]

E&, s (x) :={D&( f &Wn f )(x),
D&Wn f (x),

0�&<s;
s�&<m;

where s is an integer with 1�s�m.
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For Wn f given by (6), we have

D&Wn f (x) := :
q+

i= p+

f ({i) D&wi (x), x # [{+ , {++1]. (18)

By (10) and (11), D&wi (x) involves the derivatives of the normalized
B-splines Bm

i (x). A bound for these derivatives is given by the following
lemma, which can be quoted as a special case of [7, Lemma 2.1]

Lemma 3.1. Let Bm
i (x) be the normalized B-spline defined over xi<

xi+1< } } } <xi+m . Suppose x # [xl , xl+1] and i�l<i+m. Fix 0<&<m.
Then D&Bm

i (x) exists, and

|D&Bm
i (x)|�

1m, &

$i, l, m&1 } } } $i, l, m&&
, (19)

where, for j=m&&, ..., m&1, we define $i, l, j as the minimum of xr+ j&xr

with r such that xi�xr�xl<xl+1�xr+ j�xi+m and where

1m, & :=
(m&1)!

(m&&&1)! \
&

[&�2]+ .

We denote by I+ the interval

I+ :=[{p+ , {q+]=[x(m&1)p+ , x(m&1)q+], (20)

with p+ and q+ defined by (7) and (8). We will also need the following
parameters describing the spacing of the partitions Xn and 6n . Let

2+ := max
(m&1)p+�i�(m&1)q+&1

(xi+1&xi); (21)

H+ := max
p+�i�q+&1

({i+1&{i); (22)

H� n := min
0�+�n&1

H+ ; (23)

h+ := min
p+�i�q+&1

({i+1&{i). (24)

To estimate |E&, s | we proceed as in [7]. Hence we state the following
lemma [7, Lemma 4.1]:
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Lemma 3.2. Suppose Wn is defined on a class of functions containing Pm

and suppose (5) holds (i.e. Wn reproduces Pm). Then for any polynomial
g # Ps and any f such that D& f (t) exists, where 0�&<s�m

E&, s (t)={D&(R(t)&WnR(t)),
D&Wn R(t),

0�&<s
s�&<m

(25)

with R(x) := f (x)&g(x).

(a) Local estimates.

The purpose of this section is to obtain local estimates for |E&, s (t)|, with
t # [xl+ , xl++1]/[{+ , {++1], where l+ # [(m&1)+, ..., (m&1)(++1)&1].
Henceforth, for the rest of (a), we fix + # [0, ..., n&1].

We define for any x # I+ and f # Cs&1(I+), with 1�s�m,

R(x) := f (x)& :
s&1

i=0

f (i)(t)
i!

(x&t) i. (26)

Defining R(x) by (26), so that g(x) is the Taylor expansion of f at t, then
R(x) and its first s&1 derivatives are 0 at t. Hence, by (25), to give a
bound to |E&, s(t)| it is only necessary to estimate |D&WnR(t)|. By using
(18) we write

|D&Wn R(t)|� :
q+

i=p+

|R({i)| |D&wi (t)| . (27)

We first estimate |R({i)| :

Lemma 3.3. Let f # Cs&1(I+) with 1�s�m. Then for i=p+ , ..., q+

|R({i)|�
ms

(s&1)!
Hs&1

+ |(Ds&1f ; H+ ; I+). (28)

Proof. By the Taylor series for R we have

R({i)=
Ds&1R('i)

(s&1)!
({i&t)s&1, (29)

with 'i between {i and t, since R(t)= } } } =R(s&2)(t)=0.
Since q+& p+�m, it follows that

|'i&t|�|{i&t|�{q+&{p+�mH+ . (30)

Using the subadditivity of |(g; $; I ) we derive from (26) and (30)

|Ds&1R('i)|=|Ds&1f ('i)&Ds&1f (t)|�m|(Ds&1f; H+ ; I+). (31)
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Now (29)�(31) yield the result. K

Let

$l+, m&& := min
l++1&m+&�r�l+

(xr+m&&&xr), &=0, 1, ..., m&1. (32)

The following lemma estimates |D&wi (t)|

Lemma 3.4. Suppose t # [xl+ , xl++1]/[{+ , {++1]. Then for &=0, 1, ...,
m&1

|D&wi (t)|�{
[(m&1) } } } (m&&)] _ :

m&1

*=1

(Rn)*&
m&&&1

h&&
+ ,

(33)
for 0�+�i1&2 and n&i0+1�+�n&1;

m& _ :
i0

*=1

(Rn)*&
m&1 1m, &

($l+, m&&)& ,

for i1&1�+�n&i0 ;

where

m& :={1,
m,

for &=0;
for &>0.

Proof. We consider the following cases.

I. Setting say 0�+�i1&2 , by (10) we have for &=1, ..., m&1

|D&wi (t)|� :
m&1

\1=0
\1{i

:
m&1

\2=0
\2 � [i, \1]

} } }

:
m&1

\&=0
\& � [i, \1, ..., \&&1]

1
|{i&{\1

| } } } |{i&{\& |
`

m&1

k=0
k � [i, \1, ..., \&]

|t&{k |
|{i&{k |

.

To obtain the first bound in (33) we use the inequality, following from
inequalities (40) and (41) in [3], for i{k and a�x�{i1&1 ,

|x&{k |
|{i&{k |

� :
m&1

*=1

(Rn)*,

and we take in account that

|{i&{\k |�h+ , k=1, ..., &,

since both {i and {\k belong to I+ .
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We can proceed similarly for n&i0+1�+�n&1 .

II. Let i1&1�+�n&i0 . We observe, directly from [4, Eq. (3.7)],
(13) as well as (12), that,

|D&si (t)|�_ :
i0

*=1

(Rn)*&
m&1

:
_(i)

k=*(i)

|D&Bm
k (t)| , (34)

where

*(i) :=max[(m&1)(i&i0), l+&m+1],

_(i) :=min[(m&1)(i+i1)&m, l+].

The last sum in (34) is a sum of at most m terms, since, by (12), at most
m B-splines are different from zero at t. By using (19) we have for
&=1, ..., m&1

:
_(i)

k=*(i)

|D&Bm
k (t)|�1m, & :

_(i)

k=*(i)

1
$k, l+ , m&1 } } } $k, l+ , m&&

�m
1m, &

($l+ , m&&)
& , (35)

since, for k=*(i), ..., _(i), $k, l+ , j�$l+ , j . By (12) and since

:
l+

k=l+&m+1

Bm
k (t)=1,

we note that, for &=0, the first sum in (35) is less than or equal to one.

Now (34) yields our result. K

Now we can give a local estimate for |E&, s (t)|.

Theorem 3.1. Suppose t # [xl+ , xl++1]/[{+ , {++1] and let f # C s&1(I+)
with 1�s�m. Then for 0�&<m

|E&, s(t)|�{
K1 Hs&&&1

+ |(Ds&1f ; H+ ; I+),
for 0�+�i1&2 and n&i0+1�+�n&1;

K2, +Hs&&&1
+ |(Ds&1f ; H+ ; I+),

for i1&1�+�n&i0 ;

(36)

where

K1 :=
ms+1

(s&1)!
[(m&1) } } } (m&&)] _ :

m&1

*=1

(Rn)*&
m&&&1

(Rn)&(m&2) (37)
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and

K2, + :=(m+1) _ :
i0

*=1

(Rn)*&
m&1

m&
ms

(s&1)!
1m, & \ H+

$l+ , m&&+
&

. (38)

Proof. We consider the following cases.

I. Let 0�+�i1&2. The first inequality in (36) follows from (27),
(28) and (33) since

h+�(Rn)&(m&2)H+ ,

and q+& p+=m&1. A similar procedure holds for n&i0+1�+�n&1.

II. Let i1&1�+�n&i0 . The second inequality in (36) follows from
(27), (28) and (33) since q+& p+=m. K

(b) Uniform bounds.

The following uniform bounds can be deduced from the local estimates
of Theorem 3.1.

Corollary 3.1. Let f # Cs&1[a, b], with 1�s�m. Then, for 0�&<s

&E&, s&��KH s&&&1
n |(Ds&1f ; Hn ; [a, b]) (39)

and, for s�&<m,

&E&, s&��KH� s&&&1
n |(Ds&1f ; Hn ; [a, b]), (40)

where

K :=max(K1 , K2)

with K1 defined by (37) and

K2 :=(m+1) _ :
i0

*=1

(Rn)*&
m&1

m&
ms

(s&1)!
1m, & (m&1)& (rn)&[i0(m&1)&1],

(41)

with rn defined by (1).

Proof. By the definitions in (21), (22) and (32) we have

$l+ , m&&�xl++1&xl+ , (42)

H+�(m&1) 2+�(m&1)(rn) i0(m&1)&1 (xl++1&xl+), (43)
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since, by (9), i0�i1 . From Theorem 3.1, by inserting (42) and (43) into
(38), we get the uniform bounds (39) and (40) since, by the definitions (3)
and (23),

H� n�H+�Hn . K

For f # Cs&1[a, b], with 1�s<m, (40) provides a uniform bound of
|D jWn f | for s� j<m. In order to derive the sufficient conditions for
uniform convergence, we need the following lemma:

Lemma 3.5.

Rn� :
m&1

*=1

(rn)*.

Proof. For all i and setting j=i+1

{i&{i&1= :
m&2

*=0

(x(m&1)i&*&x(m&1)i&*&1)

�(x(m&1)i&x (m&1)i&1) :
m&2

*=0

(rn)*

and

{j&{j&1�x(m&1)i+1&x(m&1)i

�(rn)&1 (x(m&1)i&x(m&1)i&1). K

(c) Uniform convergence.

Now we can state the following corollary:

Corollary 3.2. Assume that f # Cs&1[a, b], with 1�s�m, and (17)
holds. Suppose that

[Xn] is locally uniform. (44)

Then for 1�&<s,

&D&( f &Wn f )&� � 0 as n � �. (45)

Proof. The thesis follows immediately from Corollary 3.1, with 1�
&<s, and Lemma 3.5. K

Finally, to improve the approximation power of the sequence [Wn f ], it
would be reasonable to choose the secondary knots equally spaced
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throughout [{+ , {++1] for all +. Although the order of convergence is
unchanged, we can state the following corollary:

Corollary 3.3. Let f # Cs&1[a, b] with 1�s�m. Assume that the
knots of the secondary partition Xn"6n are equally spaced throughout
[{+ , {++1], with +=0, ..., n&1. Then

(i) (39) and (40) hold with K :=max(K1 , K2*) where

K2* :=(m+1) _ :
i0

*=1

(Rn)*&
m&1

m&
ms

(s&1)!
1m, & (m&1)& (Rn)&(i0&1).

(ii) If (16) and (17) hold, then (45) is true for 1�&<s.

Proof. The proof of (i) is the same as Corollary 3.1, taking into account
that

xl++1&xl+=
{++1&{+

m&1

and

H+�(Rn) i0&1 ({++1&{+).

Property (ii) follows immediately from (41) since rn=Rn . K

4. AN APPLICATION IN NUMERICAL INTEGRATION

We use the sequence [D&Wn f ], with 0�&<m&1, for the numerical
evaluation of CPV integrals of the form

J(w:, ; D&f; *) :=�|
1

&1
w:, ; (x)

D&f (x)
x&*

dx, * # (&1, 1)=: J1 ; (46)

where

�|
1

&1
:= lim

= � 0 {|
*&=

&1
+|

1

*+== ;

w:, ;(x) :=(1&x): (1+x);, with :, ;>&1.

CPV integrals of the type (46) are evaluated numerically in [9] by using
splines based on uniform and quasi uniform meshes.
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Setting J :=[&1, 1], we define, for \ # (0, 1] , H\(J) :=[g : |(g;t;J)�
Bt\, B>0]. To prove the uniform convergence of J(w:, ; D&Wn f ; *) to
J(w:, ; D&f ; *) as n � �, we need the following convergence result [11,
Theorem 5].

Theorem 4.1. Assume that f # H\ (J) for a given exponent \ # (0, 1],
and that we are given a sequence of functions [ fn] such that

1. &en&�=o(1), where en := f & fn ;

2. en(1)=0 if :�0, en (&1)=0 if ;�0;

3. en # H_ (J), 0<_�\, uniformly in n.

Then

J(w:, ;en ; *) � 0 as n � �, uniformly in * # J1 , (47)

if _+min(:, ;, 0)>0.

We denote by Il+ the interval

Il+ :=[xl+&m+1, xl++m]

and we set

2� l+ := max
l+&m+1�i�l++m&1

(xi+1&xi).

We state the following theorem, proved in [11, Theorem 4].

Theorem 4.2. Let 0�&<m&1, f # C&(J) and consider any sequence of
locally uniform spline spaces [Sm, n]. If any spline S # Sm, n satisfies

1. S # C&(J);

2. |D&( f (t)&S(t))|�C1 |( f (&); 2� l+ ; Il+), xl+�t�xl++1;

3. |D&+1S(t)|�C2 2� &1
l+ |( f (&); 2� l+ ; Il+), xl+<t<xl++1 .

Then

|(S (&); 2; J)�C3 |( f (&); 2; J). (48)

We shall state and prove the following uniform convergence theorem for
CPV integrals of the form (46):

Theorem 4.3. Assume that (17) holds and that f # C& (J), with
0�&<m&1, and f (&) # H\ (J) for a given exponent \ # (0, 1]. Suppose
that (16) holds for &=0 and (44) holds for &>0. If &=0 and
\+min(:, ;, 0)>0, or if &>0 and :, ;>0, then (47) holds with
en=D&( f&Wn f ).
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Proof. Theorem 4.1. 1 is true by Corollary 2.1, for &=0, and by
Corollary 3.2, for &>0.

Theorem 4.1. 2 holds for &=0 and is not required for &>0, since
:, ;>0.

By the assumption \+min(:, ;, 0)>0 if &=0 and, if &>0, by observing
that, since :, ;>0, _+min(:, ;, 0)>0 for any _>0, we need to verify
Theorem 4.1, 3 with _=\. To do this we have to prove that W (&)

n f # H\(J),
since, for any u, v # J,

|en (u)&en (v)|�| f (&)(u)& f (&)(v)|+|W (&)
n f (u)&W (&)

n f (v)| .

By observing that Il+/I+ and

xl++1&xl+�2� l+ ,

we can derive, from (36)�(38), (42), (43) and by subadditivity of the
modulus of continuity, that Wn f satisfies the conditions required by
Theorem 4.2. Now (48) yields our result. K
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